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Abstract

We test for skewness preferences in a large set of observational panel data on online

poker games (n=4,450,585). Each observation refers to a choice between a safe option and

a binary risk of winning or losing the game. Our setting offers a real-world choice situa-

tion with substantial incentives where probability distributions are simple, transparent, and

known to the individuals. Individuals reveal a strong and robust preference for idiosyn-

cratic skewness, which has important implications for asset pricing. The effect of skewness

is most pronounced among experienced and losing players but remains highly significant

for winning players, in contrast to the variance effect.
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1 Introduction

According to standard portfolio theory (Markowitz, 1952), mean-variance preferences reflect

the main trade-off for choice under risk. More recent literature in finance and behavioral eco-

nomics has argued, however, that also higher moments play a decisive role—in particular skew-

ness, a distribution’s standardized third moment. There is compelling empirical evidence for

skewness preferences—preferences for positive and an aversion toward negative payoff skewness

(Boyer et al., 2010; Bali et al., 2011; Green and Hwang, 2012; Conrad et al., 2013; Boyer and

Vorkink, 2014; Lin and Liu, 2018; Jondeau et al., 2019). These empirical findings challenge tra-

ditional asset pricing models, in which only coskewness with the market is relevant for asset

prices (Kraus and Litzenberger, 1976; Harvey and Siddique, 2000). In contrast, more recent

behavioral-based asset pricing models depart from the standard expected utility framework

and posit that an asset’s idiosyncratic skewness is priced because investors have a preference for

skewness or lottery-like features of assets (for such models see Brunnermeier and Parker, 2005,

Mitton and Vorkink, 2007, and Barberis and Huang, 2008). Despite the vast empirical literature

on skewness preferences, the relevance of idiosyncratic skewness for financial decision-making

and asset prices remains in question as alternative explanations of the identified effects can usu-

ally not be ruled out. Measuring ex-ante skewness in real-world settings is usually impossible,

and risk preference estimation requires strong assumptions because the underlying probability

distribution is usually very complex, estimated based on past data, and de facto unknown to

the decision-maker.

This paper directly tests for skewness preferences in a large set of observational panel data

on real-world choices. The studied decision can be understood as a stylized example of an in-

vestor’s decision between a risk-free investment and an investment in an idiosyncratic "risky

asset". The decision situations we analyze are subject to a well-defined set of lotteries, whose

underlying ex-ante probability distribution can be objectively and unambiguously calculated.

In addition, probabilities are transparently displayed to decision-makers at decision time.1 Con-

sequently, we do not need to approximate the underlying probability distribution and impose

strong assumptions that individuals correctly estimate and comprehend such a distribution.
1Our setting shares many desirable features with betting markets (e.g. Andrikogiannopoulou and Papakon-

stantinou, 2020; Moskowitz, 2021). For example, termination points and terminal payoffs of bets are independent
of investors’ beliefs, preferences, or other factors, such as systematic risk. One major difference in betting markets is
that ex-ante objective probabilities cannot be observed.
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The risks involved are binary and uniquely determined by the first threemoments of their prob-

ability distribution: expected value, variance, and skewness, allowing for a clean identification

of skewness preferences. In addition, individuals in our data set can generally be expected to

understand risks and probabilities well. Thus, we regard our data set as well-suited to study

risk preferences (rather than risk-taking driven bymisunderstandings or imperfect information).

We show that skewness has a sizeable and significant effect on risk-taking, while the effect of

variance is comparably negligible. These findings are not coherent with expected utility theory

(see Section 2) and lend support to behavioral asset pricing models that allow for preferences

for skewness or lottery-like features of stocks. Skewness prefernces are a central prediction of

most behavioral models of choice under risk, such as prospect theory (Kahneman and Tver-

sky, 1979), disappointment aversion (Gul, 1991), or salience theory (Bordalo et al., 2012). They

can explain a wide range of seemingly disparate puzzles in finance, such as the growth puzzle

(Fama and French, 1992; Bordalo et al., 2013), many instances of portfolio underdiversification

(Mitton and Vorkink, 2007), and the disposition effect (Barberis and Xiong, 2009; Fischbacher

et al., 2017).2 Moreover, there are numerous behavioral studies providing evidence for skew-

ness preferences in stylized laboratory experiments with limited generalizability to real-world

economic behavior (e.g., Ebert and Wiesen, 2011; Ebert, 2015; Trautmann and van de Kuilen,

2018; Dertwinkel-Kalt and Köster, 2020). Unlike laboratory experiments on skewness prefer-

ences, we cover a wider range of incentives, have a higher number of observations, and do not

build on an artificial choice situation.

In detail, we study risk-taking in online poker, making use of a novelty that the world’s

largest online poker platform, Pokerstars, introduced in August 2019: the so-called all-in cashout.

The all-in cashout provides insurance against a player’s risk in a showdown situation. In a

showdown situation, the outcome of the poker hand is solely determined by the cards drawn

from the remaining deck of cards. All relevant information is disclosed, and the respective

winning probabilities for each player can be easily calculated. The two outcomes of the implied

binary lottery are: i) losing and receiving a payout of zero or ii) winning the entire pot, i.e.,

the accumulated bets by players at the table throughout a hand. The all-in cashout gives each
2Other examples of puzzles in choice under risk that can be explained by skewness preferences include the

favorite-longshot bias, whereby positively skewed long shots are overbet and negatively skewed return distributions
of favorites are underbet (e.g., Snowberg andWolfers, 2010), the simultaneous demand for lottery-like gambles and
high-premium insurances (Kahneman and Tversky, 1979; Sydnor, 2010; Garrett and Sobel, 1999) and theAllais para-
dox (Allais, 1953). Test of skewness preferences in labor economics include (Hartog and Vijverberg, 2007; Berkhout
et al., 2010).
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player in a showdown situation the option to choose a safe payout equal to the expected payout

of the underlying lottery minus a profit margin for Pokerstars of 1%. Each observation refers to a

player’s choice between this safe insurance option and the respective binary lottery.3 Our data

set includes 4,450,585 of such individual choices in showdown situations with two opponents

for Omaha Poker cash games, all collected between January 1, 2020, and June 30, 2021.4

As winning the pot is a complementary event for the two opponents, for each observation

involving a right-skewed lottery with the winning probability π < 0.5, there is exactly one

observation in our data set that involves a left-skewed lottery with the winning probability 1−

π > 0.5. Both of these lotteries have identical variance but inverse skewness, which allows us to

circumvent the pitfalls of other studies (e.g., Golec and Tamarkin, 1998) where any choice shift

that is attributed to a change in skewness could be likewise attributed to a change in variance.5

Unlike variance, skewness has a strong and robust effect on risk-taking. The insurance option

is selected in 20.0% of cases when the risk is left-skewed, but only in 14.2% of cases when the

risk is right-skewed. Put differently, it is around 40% more likely that the insurance option is

selectedwhen players face a left-skewed instead of a right-skewed risk. This difference is highly

statistically significant (p-value < 0.0001, t-test).

In our regression analyses, we followMitton and Vorkink (2007) and assume a utility func-

tion that is linear in the different risk moments. In our basic specification, we regress an insur-

ance choice dummy that equals one if player i chooses the insurance option in showdown j and

zero otherwise, on the first three moments of the underlying lottery. We further include game

fixed effects to control for heterogeneity in insurance choices across different games and month

fixed effects to account for month-specific heterogeneity as potentially driven by seasonal ef-

fects or COVID-19 countermeasures. Increasing skewness by one standard deviation, keeping

the variance and expected values of the lotteries equal, decreases the likelihood that the insur-

ance option is chosen by 2.3−2.4 percentage points, which is equivalent to a decrease of around

13.5% compared to the average share of positive insurance choices (i.e., the mean dependent
3Strictly speaking, the lottery is not always binary as there are situations where a split pot can occur; we discuss

this limitation of our study in Section 3.3.
4Showdowns with more than two players typically yield more complex probability distributions, depending on

when each player decides to go all-in and depending on each player’s budget when going all-in. Thus, for clarity,
we restrict our analysis to situations where only two players go all-in.

5In our study, in every single choice situation, the right-skewed lottery always has a smaller expected value than
its left-skewed counterpart, making it impossible to distinguish between the effect of a larger skewness versus the
effect of a lower mean in a given choice situation. While we account for different expected values in our regression
analyses, neither standard nor behavioral models suggest that the mean should be an important driver of risk-taking
in our setup.
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variable). The estimated effect of variance is negligible in most specifications. A one standard

deviation increase in variance is associated with a decrease in insurance choice of around 0.0 to

0.3 percentage points, depending on the specification. In the basic linear probability model, the

estimated effect is only weakly significant. These results remain robust to different empirical

specifications (such as Probit and Logit models), to controlling for player-specific characteris-

tics (such as experience and average profit per hand) and hand-specific variables (such as the

amount of money the player started the hand with, the weekday, or the stake, i.e., the size of

mandatory bets), to excluding outliers, and to using the coefficient of variation (the inverse

"Sharpe" ratio of the lottery) instead of expected value and variance. The panel structure of

our data further allows us to include individual fixed effects to control for time-invariant het-

erogeneity across individuals. Including individual fixed effects alter the effect of skewness,

neither in terms of magnitude nor significance, and does not affect the estimated coefficient of

the first two moments by much.

To learn more about the robustness, the generalizability, and the implications of our results,

we study heterogeneity in risk preferences in different subgroups. We split our sample at the

median for the various player- and hand-specific characteristics. We find evidence of skewness

preferences in all subsamples. The evidence is strongest for relatively experienced players, as

measured by the number of showdowns the player participated in or by the total number of

hands played (including hands without showdowns). For this subsample, increasing skew-

ness by one standard deviation decreases the likelihood that the insurance option is chosen by

around 3.3 percentage points, which is about one and a half times the effect estimated in the

full sample. Moreover, when restricting the analysis to the experienced players, the effect of the

other twomoments decreases in absolute size or even changes signs. Related studies (Palomäki

et al., 2013, 2014) suggest that experienced poker players aremore self-reflective, less affected by

emotions, and likely to understand the decision environment and the underlying probabilities

better than inexperienced players. Taking these insights into account, we think that the esti-

mated effect of a moment for an experienced player can be plausibly attributed to a preference

for that moment, which is rather not diluted by a misperception of the underlying lotteries or

by random and emotional choice.6

6For this reason, Eil and Lien (2014) focus exclusively on experienced poker players in their study on reference-
dependent risk attitudes.
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While a player’s skill cannot affect the outcome of the studied lotteries, it can affect the long-

run profits of players. To investigate how far our findings depend on a player’s skill, we run

our analyses separately for winning and losing players. Winning (losing) players have made a

positive (negative) net profit over our observation period playing Omaha Poker cash games. To

address the issue that poker profits can be the results of luck in the short run, we further define

winning players as sophisticated if, in addition to making positive profits, they are experienced

(i.e., they have played sufficiently many hands). Likewise, we define recreational players as

experienced but losing players.7 Only the effect of skewness is significant in all subsamples, but

more pronounced for recreational players.

Despite the popularity of online poker, our data set relies on a selective sample of people—a

feature that is shared by most field studies on risky choice, which are restricted to, e.g., finan-

cial investors (e.g. Boyer et al., 2010; Conrad et al., 2013; Lin and Liu, 2018), game show partici-

pants (e.g. Gertner, 1993; Post et al., 2008), bettors (e.g. Snowberg and Wolfers, 2010; Andriko-

giannopoulou and Papakonstantinou, 2020), or people buying auto insurance (e.g. Cohen and

Einav, 2007). In our case, the selected sample has advantages anddisadvantages. On the upside,

poker players are used to risky choice situations and probabilities. Thus, our findings should

not be confounded by a misunderstanding of the lotteries and can be plausibly attributed to

the player’s risk preferences. On the downside, online poker may attract individuals with non-

representative (risk) preferences, which is backed by the observation that the overall insurance

take-up is rather low and playing online poker has, on average, a negative expected return due

to the fee taken by the platform providers (on average a player loses around $0.088 per hand).

Past studies suggest that (online) poker players are more likely to be younger andmale than the

general population (Barrault and Varescon, 2016). While not being necessarily applicable to the

general population, our results could be rather informative for individuals that self-select into

risky choices in other instances, such as individual investors—particularly those with a large

propensity to invest in lottery-type stocks (Kumar, 2009) or cryptocurrencies (Hackethal et al.,

2022)—, bettors (e.g. Andrikogiannopoulou and Papakonstantinou, 2020; Moskowitz, 2021),

and entrepreneurs (Moskowitz and Vissing-Jørgensen, 2002).8

7Sophisticated and recreational players may systematically differ in risk attitudes and preferences. sophisticated
players may resemble financial experts, while recreational players may resemble speculative retail investors better.

8That our results carry over to other relevant populations is also supported by the fact that similar findings have
also been documented in an experimental laboratory study with German University students (see Experiment 1 in
Dertwinkel-Kalt and Köster, 2020).
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In addition to the broad literature on skewness preferences in finance, behavioral economics

and labor economics, this paper also adds to the literature on decision making in poker games.

Besides some studies that aim to quantify the extent of skill and luck in poker games (e.g.,

Fiedler andRock, 2009; Potter van Loon et al., 2015; Duersch et al., 2020), researchers havemainly

used poker data to study reference-dependent risk attitudes. Smith et al. (2009) and Eil and Lien

(2014) find that poker players play less cautiously, longer, and more aggressively after losing

a big pot or if a player is losing within a poker session. These findings are in line with the

break-even hypothesis (Kahneman and Tversky, 1979; Thaler and Johnson, 1990). One chal-

lenge when analyzing poker play is that it crucially depends on the players’ expectations about

the opponents’ hands and playing style (both of which are unobservable). By focusing on those

situations where all uncertainty is resolved and players cannot actively affect the outcome of the

game anymore, we can, however, overcome these problems. So unlike in previous studies (e.g.

Smith et al., 2009; Eil and Lien, 2014), missing information, wrong beliefs or amisunderstanding

of the risks involved should not play a role in our setup and should not confound our insights

on the drivers of risk-taking.

We proceed as follows. In Section 2 we define skewness preferences and discuss the related

literature. In Section 3 we describe our data before we present our results in Section 4. Section

5 concludes.

2 Theoretical Background and Related Literature

Our observations involve binary decisions between a safe “insurance” option and a binary lot-

teries L. As we will see in Lemma 1, such a binary lottery is uniquely defined by its expected

valueE[L], its variance V ar[L] and its skewness S[L], which is defined by the third standardized

central moment

S[L] := E

( L− E[L]√
V ar[L]

)3
 . (1)

We can then define the following notions.

Definition 1. Lottery L is called right-skewed (or, equivalently, positively skewed) if S(L) > 0, left-

skewed (or, equivalently, negatively skewed) if S(L) < 0, and symmetric otherwise.
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Other definitions of positive skewness, such as via “long and lean” tails of the risk’s proba-

bility distribution, exist and are in general not equivalent. For binary risks L = (x1, π;x2, 1−π),

where outcome x1 is realized with probability π and x2 with probability 1 − π, Ebert (2015),

however, shows that all conventional notions of skewness are equivalent and the skewness of a

binary risk is well-defined. Moreover, binary lotteries can be uniquely identified by their first

three moments as shown by Ebert (2015) and generalized by Dertwinkel-Kalt et al. (2021):

Lemma 1. For constants E ∈ R, V ∈ R+ and S ∈ R, there exists exactly one binary lottery L =

(x1, π;x2, 1 − π) with x2 > x1 such that E(L) = E, V ar(L) = V and S(L) = S. Its parameters are

given by

x1 = E −
√
V (1− π)

π
, x2 = E +

√
V π

1− π
, and π =

1

2
+

S

2
√

4 + S2
. (2)

We denote the binary lottery with expected value E, variance V , and skewness S as L(E, V, S).

As a result of Lemma 1, it is possible to vary skewness for binary risks while fixing the first

two moments. We can now define skewness preferences as follows:

Definition 2. For any E ∈ R and V ∈ R+, an agent reveals a preference for skewness if the following

holds: she strictly prefers the binary lotteryL(E, V, S) over the safe option that pays the lottery’s expected

value E if and only if S is strictly positive and sufficiently large.

Expected Utility Theory. In the following, we formally show that Definition 2 violates ex-

pected utility theory (henceforth: EUT) and is not coherent with any EUT utility function. Let

u(·) be a utility function with normalization u(0) = 0, and consider L = (0, 1 − π;x, π). Ac-

cording to Definition 2, there exists a threshold skewness value, or equivalently, a threshold

probability level π̄ ∈
(

1
2 , 1
)
so that for all x ≥ 0 and all π ∈ (0, 1) we have

u(πx) ≥ πu(x) if π > π̄ (3)

u(πx) < πu(x) if π ≤ π̄. (4)

Now we define x′ := 2x and assume π ∈ (1
2 ,

π̄
2 ). Then, (3) and (4) yield 2πu(x) ≤ u(2πx) =

u(πx′) < πu(2x), and thus 2u(x) < u(2x). But we also have u(x) = u(1
2 · 2 · x) ≥ 1

2u(2x), which

gives 2u(x) ≥ u(2x). Taken together, these two derivations give a contradiction. Intuitively, Def-

inition 2 stipulates that the agent is (i) risk-averse over all risks that are not sufficiently skewed,
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which necessitates a weakly concave utility function, but (ii) risk-seeking over all sufficiently

skewed risks, which necessitates a strictly concave utility function. Taken together, (i) and (ii)

give a contradiction.

Notably, in our empirical setting the agent cannot obtain a gamble’s expected value E, but

only slightly less, namely 0.99E. This, however, does not alter any of the conclusions we have

drawn on the validity of EUT, as demonstrated in the following. Suppose an agent strictly

prefers a risky option L = (0, 1 − π;x, π) over 99% of its expected value, πx, if and only if the

risky option’s skewness is sufficiently large. Then we obtain the conditions that are analogous

to (3) and (4), namely,

u(0.99πx) ≥ πu(x) if π > π̄

u(0.99πx) < πu(x) if π ≤ π̄.

The very same contradiction as above can be constructed from these conditions. Intuitively,

in order to weakly prefer 0.99E over a risky option with expected value E and non-positive

skewness, the utility functionmust be sufficiently concave, but in order to prefer the risky option

over 0.99Ewhen skewness is sufficiently positive, the utility functionmust not be that concave—

a contradiction.

EUTwith the only additional assumptions of prudence (whereby the third derivative of the

utility function is strictly positive, that is, u′′′ > 0) can, however, explain why agents strictly pre-

fer, c.p., right- over left-skewed risks, so L(E, V, S) over L(E, V,−S). Some papers in the litera-

ture, such as Ebert andKarehnke (2020), use this definition of skewness preferences, whereby—

when choosing between two binary lotteries L(E, V, S) and L(E, V,−S) that are identical in all

but the sign of skewness—the lottery L(E, V, S) is chosen. Unlike the definition that we use,

skewness preferences in this alternative sense can be reconciled with EUT (by assuming the

right signs for higher order derivatives of the utility function; see Kraus and Litzenberger (1976)

for a classical finance model that presents this approach).9 We, however, view this alternative

definition as less relevant for practice, as our motivating examples (gambling vs. insurance

choice or most of the applications in financial or labor economics) as well as the choice situ-

ations that we investigate better fit the definition we build on. We are not even aware of any
9For financial markets, Kraus and Litzenberger (1976) can explain within EUT why a tradable financial asset’s

coskewness with the market is priced, but not why its own skewness is priced. To explain this, behavioral economic
models are needed as pointed out, for instance, by Barberis and Huang (2008).
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real-life situations where such choices between L(E, V, S) and L(E, V,−S) play a role, that is,

where an agent chooses between two risks that just differ in the sign of skewness; all common

examples (whether to gamble or to buy insurance, for instance) instead reflect the setup of Def-

inition 1, that is, the choice between one risky and one safe option.

Taken together, skewness preferences as defined in Definition 2 are not coherent with EUT.

In order to explain why agents dislike symmetric risks, EUT needs to assume that the utility

function is strictly concave. Under this assumption, however, EUT predicts, for any skewness

level, that the safe payout of E should be strictly preferred over any lottery that pays E in ex-

pectation. When EUT wants to explain why an agent takes up a positively skewed risk, it has

to assume a convex utility function (u′′ > 0), but this then goes along with the implausible pre-

diction (that also violates Definition 2) that every binary lottery is preferred over the safe option

that pays its expected value. So, EUT cannot explain why people’s preference to take up a risk

depends on the risk’s skewness. The same holds for standard portfolio theory (Markowitz,

1952), whereby people’s utility from some risk is linearly increasing in its expected value and

linearly decreasing in its variance. Thus, EUT and standard portfolio theory would predict that

whether some risk is taken up mainly depends on variance, but not on skewness.

Behavioral Economics. Skewness preferences as defined in Definition 2 are predicted, how-

ever, by most behavioral models of choice under risk such as cumulative prospect theory (Kah-

neman and Tversky, 1979), salience theory (Bordalo et al., 2012), regret theory (e.g. Bell, 1982;

Loomes and Sugden, 1982), and disappointment aversion (Gul, 1991), as shown, for instance,

in Barberis (2012), Dertwinkel-Kalt and Köster (2020), and Ebert and Karehnke (2020). Also

seminal models proposed in the behavioral finance literature (Mitton and Vorkink, 2007) allow

for skewness preferences by, for instance, augmenting standard portfolio theory by an addi-

tional term that allows not only for a linear effect of expected value and variance, but also of

skewness on utility.

Skewness preferences allow us to understand why revealed attitudes toward risks vary

across contexts. On the one hand, people like to gamble (e.g., Golec and Tamarkin, 1998,

Garrett and Sobel, 1999) but they also overpay for insurance with low deductibles (e.g., Syd-

nor, 2010; Barseghyan et al., 2013). In financial markets, investors seek positively skewed return

distributions (Chunhachinda et al., 1997; Prakash et al., 2003; Mitton and Vorkink, 2007; Boyer

et al., 2010; Bali et al., 2011; Conrad et al., 2013). Skewness preferences also matter in labor eco-
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nomics as they affect career choices (Hartog and Vijverberg, 2007; Berkhout et al., 2010; Grove

et al., 2021) as, for instance, workers accept a lower expected wage if the distribution of wages

in a cluster (i.e., education-occupation combination) is right-skewed. Similarly, a preference for

skewness can explain the substantial entrepreneurial investments in private equity with bad

risk-return tradeoffs (Moskowitz and Vissing-Jørgensen, 2002).

The characteristics of binary lotteries outlined abovemake it appealing to study skewness ef-

fects at the hand of binary lotteries. To identify skewness preferences, it is optimal to let agents

repeatedly choose between a safe option and a binary lottery, where only the lottery’s skew-

ness differs between choices. In such a setting, skewness preferences predict a negative relation

between insurance choice and the lottery’s skewness. While this decision situation is hardly

implementable in the field (for a laboratory experiment that precisely implements this see Ex-

periment 1 in Dertwinkel-Kalt and Köster, 2020), our setup approximates these experiments

as closely as possible (for a discussion of differences to the ideal setup see the discussion of

limitations in Section 3.3).

In our setup, poker players face the choice between a lottery and the safe option that pays

99% of the lottery’s expected value. Thus, the lottery is selected if and only if for the player’s

utility function U(·) we have U(L) > 0.99 U(E(L)). We follow Mitton and Vorkink’s (2007)

reduced-form approach by assuming “Lotto investors” that have identical preferences as tradi-

tional investors over mean and variance (see Markowitz, 1952), but also a preference for skew-

ness. The utility such investors derive from some lottery L is then given by

U(L) = E(L) + βV V ar(L) + βSS(L).10

A positive (negative) coefficient βV on variance indicates variance-loving (variance-averse)

agents, and a positive (negative) coefficient βS on skewness indicates a preference for posi-

tive (negative) skewness. This approach therefore allows for both positive and negative effects

of variance and skewness on a lottery’s valuation. We will not directly estimate the effect of the

lottery’s moments on the lottery’s utility, but on the likelihood that the lottery is preferred over

the safe alternative.
10Unlike Mitton and Vorkink (2007) we adopt the usual narrow-framing assumption that is adopted throughout

experimental economics: namely, that subjects do not integrate their earning from the respective game into their
overall wealth, but evaluate it in isolation.
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3 Background and Data

In this section, we first provide the background onOmaha Poker by explaining the game and the

new insurance option that our study builds on. We then give an overview of our data set and

discuss its advantages and limitations.

3.1 Background

On Omaha Poker cash games

Weanalyze hands fromOmaha Poker cash games. In a cash game, all players start the handwith

an amount of real money, the stack, which will be used for betting throughout the respective

hand.11 Money cannot be added or withdrawn during a hand. However, players can leave

the table after a hand is concluded or add chips up to a maximum amount depending on the

blinds—size of mandatory bets posted before every hand—of the respective table. Accordingly,

we define the stake of a game by the size of the blinds.12

In Omaha Poker cash games, each player is dealt four private cards (hole cards) that are only

visible to the respective player. In addition, there are up to five community cards that are public

information and are dealt throughout three stages: i) Flop: first three community cards; ii)

Turn: fourth community card; iii) River: fifth community card. Each stage is preceded and/or

followed by a betting round. The money that players post throughout these betting rounds is

collected in the pot. Furthermore, there is a fee collected by Pokerstars, called the rake that is

deducted from the pot. The rake is calculated as a percentage of the pot, ranging from 3.5% to

5% depending on the stake, and capped at a certain amount.13 Accordingly, the winning player

is awarded the net pot, that is, the pot minus the rake.

If the betting causes all but one player to lay down their hole cards (i.e., they fold), the re-

maining active player wins the net pot without showing any private cards. Otherwise, the net

pot is awarded to the active player with the best five-card poker hand after the last community
11Beside the fact that the insurance option is only available for cash games, cash games are also more suited to

our question and "easier to analyze than tournament games, since in a cash game, a player who is risk neutral over
money should also be risk neutral over chips. This is not necessarily the case in a tournament, for a number of
reason" Eil and Lien (2014), including varying incentives to outlast other players in different tournament phases or
non-linear payout structures.

12In a poker cash game there are usually two blinds, the big blind and the small blind, which is half the size of the
big blind. In the remainder of the paper, the stake always refers to the big blind.

13For more details see: https://www.pokerstars.eu/poker/room/rake/.
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card is dealt. This best five-card poker hand consists of two of the player’s hole cards and three

community cards (see also the official ranking of poker hands in Appendix A.1).

The hole cards are revealedwhen either the betting round after the River is finished or when

there are N > 2 active players, of which at least N − 1 players are all-in, that is, they put their

entire stack in the pot. The latter scenario is called a showdown. In a showdown, the players

face a binary lottery L, whose outcome depends solely on the cards that will be drawn from the

remaining deck of cards: L = (pot− rake, π; 0, 1− π).14 In such a situation, the probability that

one player wins the net pot, π, can be calculated conditional on the revealed individual hole

cards and the community cards that have been dealt until the showdown.

Figure 1: Exemplary screen of a showdown on Pokerstars with one card to come

Figure 1 shows an example of a showdown after the Turn, i.e., with one card to come. Player

1 is all-in, and no more betting is possible. The best five-card hand of Player 1 is a High Card

Queen, which loses against the Two Pairs (queens and tens) of Player 6. Player 1 can only win the

hand if a Heart-card is drawn from the remaining cards, which would give her a winning Flush
14Under certain circumstances split pot situations may occur. In such a scenario, the lottery is not binary. We

abstract from these scenarios here and discuss the issue in Section 3.3 in more detail.
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(five cards of the same suit). In total, there are 13 Heart-cards in the 52-card deck. Five Heart

cards have been already revealed, implying that there are still eight Heart cards among the 40

cards that have not been revealed yet. The probability of Player 1 winning the hand is thus

simply the number of remaining Heart cards (eight in our example) divided by the number of

remaining cards, 52−12 = 40: 8
40 = 0.20. The probability of losing is accordingly 0.80. As shown

in Figure 1, these probabilities and the exact size of the net pot are displayed in an all-in situation

on the players’ screens. If the showdown happens at an earlier stage, the probabilities can be

calculated by dividing all possible realizations of community cards, in which a specific player

holds the winning hand, by the total number of possible realizations. Again, the corresponding

probabilities and the net pot are displayed to the players (see inAppendixA.2 an examplewhere

the showdown happens before any community is revealed).

The insurance option

We make use of the new insurance option (the so-called all-in-cashout) introduced on August

13, 2019, on the Pokerstars website, which provides a safe alternative against the risk that the

players face in a showdown. If a player chooses the insurance option, she will no longer be

eligible to contest any portion of the net pot, and the offered amount will be added to her stack

immediately and risk-free. If she declines, shewill continue to contest the entire net pot as usual.

Players declining the insurance option still need the best hand in a showdown to win the net

pot, even if all their opponents have cashed out. As a result, each active player in a showdown

faces a choice between a binary risk and a safe option. The guaranteed payout from choosing the

insurance option is equal to the expected value of the lottery minus a fee of 1% on this expected

value, i.e., equal to $(pot − rake) × π × 0.99. The 1% fee charged by Pokerstars is equal for all

players and has not changed since the insurance option’s introduction. The insurance payout is

rounded to full cents.

To better understand a player’s decision in a showdown, turn again to Figure 1, which shows

a situation in which the insurance option is offered to Player 1. The two red buttons signify the

binary choice between two lotteries: i) the risky option "Resume hand" (explained above) that

pays $2.79 with 20% and zero with 80%; ii) and the safe insurance option that pays $0.55 with

100%. As can be seen in Figure 1, the probabilities and the exact size of the net pot are displayed

on the players’ screens. The displayed insurance payout does already include the rake and the
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1% fee. Accordingly, Player 1’s insurance payout in our example is equal to: $2.79×0.2×0.99 =

$0.55 and Player 6’s insurance payout will be: $2.79× 0.8× 0.99 = $2.21. Thus, the players are

readily presented with all information that is relevant for their decision. The players have 12

seconds to make their choice. If players do not choose one of the proposed alternatives in time,

the hand resumes with the risky option.15

3.2 Data

Our data set includes 4,450,585 observations, where every observation refers to a unique deci-

sion by a single player in a two-person showdown situation as described above. This includes

the decisions of 83,219 distinct players.16

Our data set is extracted from 35,529,631 distinct poker hands played between January 01,

2020, and June 30, 2021, on Pokerstars, the largest online poker network in the world.17 We ob-

tain the raw data from a commercial poker data provider that collects and stores hand histories

for everyOmaha Poker cash game played on Pokerstars.18 Hand histories are automatically gen-

erated by the Pokerstars software and include all public information of a single poker hand.19

Our data set spans a wide range of tables that vary in the size of the mandatory bets, and the

maximum amount players can bring to the respective table. The hand histories include infor-

mation on all community cards, the hole cards of the players that went to a showdown, and the

net pot size. This information allows us to calculate each player’s probability of winning the pot

at showdown and assign each player’s insurance payout value. Furthermore, our data allow us

to infer whether a respective player has chosen the insurance option for each showdown.

We capture a player’s decision between the safe option and the binary lottery by the variable

insurance choice, our dependent variable of interest. This variable equals one if the player chooses

the safe option and zero if she chooses the binary lottery. In our data set, players choose the safe
15For more details see: https://www.pokerstars.com/poker/promotions/all-in-cash-out.
16Aswe explain in Section 3.3 in more detail, we exclude all observations that are not skewed, i.e., have a winning

probability of 0.5, as most of these observations refer to situations with degenerated underlying lotteries, for which
no insurance option was offered.

17Note that the number of poker hands exceeds the number of observations as not every poker hand results in a
two-person showdown. See the worldwide Online Poker Sites Traffic Report for statistics on the largest online poker
platforms: https://www.pokerscout.com/.

18Our data provider HH Dealer (https://www.hhdealer.com/) collects the hand histories for various online poker
platforms. At Pokerstars, a hand history is accessible by all Pokerstars users that opened the window of a respective
table. As a quality check, we played several sessions on the Pokerstars platform during the data collection period
and checked whether the obtained histories are complete and accurate.

19The raw data is provided in text files and we make use of the commercial poker software "PokerTracker 4"
(https://www.pokertracker.com) to convert the raw data into a workable data set. Smith et al. (2009) use a earlier
version of "PokerTracker" to construct their data set.
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option in 17.1% of cases with a standard deviation of 0.377 (Table 1). Notably, the overall share

of choices of the insurance option is rather low. A majority of players choose the risk instead of

the insurance option, whichmight be driven by a large share of individuals that are risk-seeking

in general or by the 1%-margin that has to be paid to Pokerstars if the insurance option is chosen.

Table 1: Summary statistics on insurance choice

Statistic N #(Choice=1) #(Choice=0) Mean St. Dev.
Insurance Choice 4,450,585 761,585 3,689,000 0.171 0.377

Note: The table reports summary statistics on the insurance choice dummy that equals one if the safe op-
tion is chosen and zero otherwise.

The winning probabilities and the net pot size allow us to calculate the expected value, E =

πx, the variance, V = π(1 − π)x2, and the skewness, S = 1−2π√
π(1−π)

, of each binary gamble

players face in a showdown situation. Table 2 presents the descriptive statistics for the first

three moments of the binary lotteries in our data set. Our lotteries have an average expected

value of 62.39, with a standard deviation of 326.58 and a median of 13.37 (all in US-$). The

range of the expected values of the different lotteries is very wide and stretches from $0.001 to

$64,242.40. Our measure of skewness takes values from -40.79 to 40.79 with a zero mean.

Table 2: Summary statistics on different moments

Statistic N Mean St. Dev. Pctl(25) Median Pctl(75)
Expected Value 4,450,585 62.39 326.58 5.11 13.37 35.92
Variance 4,450,585 73,786.68 2,157,525.00 29.52 148.86 964.71
Skewness 4,450,585 0.00 2.23 −0.86 0.00 0.86

Note: The table reports summary statistics of the expected value, variance, and skewness for the lotteries in our
sample. In calculating we use the values of net pot sizes, which are measured in US-$ terms.

The data set also includes each player’s screen name, which serves as a unique identifier for

each observation (togetherwith the distinct hand number). It allows us to control for individual

fixed effects. In addition, our data records each player’s stack at the beginning of the hand

and some hand-specific characteristics, such as date, time, and the size of the mandatory bets

(stake). For all four betting rounds, we further observe the actions of all active players, i.e.,

players that have not folded their hands. On average, a player in our sample plays 2,159 hands
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and faces 53.48 two-person showdown situations during the respective period. The average

stack at the beginning of the hand is $115.1, ranging from $0.10 to $81,644.20

For additional analyses and robustness checks, we extract several player-specific character-

istics from the raw data, including the number of hands played over the observation period,

the amount won/loss over the entire period (including hands with no showdown), and the

average winning probability in showdown situations. As a result of the rake collected by Poker-

stars, a player makes an average loss of $0.088 per hand played. More details and the respective

summary statistics are provided in Appendix A.4.

3.3 Limitations of our framework

Poker players are not representative of the general population. A player in our sample loses on

average $0.088 per hand, and the general likelihood of choosing the insurance option is rather

low. Previous studies suggest that (online) poker players are quite likely "young men, exec-

utives or students, mostly single and working full-time" (Barrault and Varescon, 2016). Al-

ternative field studies, however, usually also build on non-representative samples.21 Conse-

quently, we expect our sample to be more representative of people that self-select into related

risky choices such as individual investing—in particular in lottery-type stocks (Kumar, 2009)

and cryptocurrencies (Hackethal et al., 2022)—, betting (Andrikogiannopoulou and Papakon-

stantinou, 2020; Moskowitz, 2021), and entrepreneurial investments (Moskowitz and Vissing-

Jørgensen, 2002; Vereshchagina and Hopenhayn, 2009). To address generalizability concerns,

we also conduct heterogeneity analyses in Section 4.4. Finally, we are confident that our results

do not crucially rely on the selection of our sample, as our core results are also detected in (small-

scale) lab experiments with German University students (see Experiment 1 in Dertwinkel-Kalt

and Köster, 2020, and replications thereof).

Some features of our selection are even advantageous: poker players are generally experi-

enced in dealing with risks and probabilities, so a misunderstanding of the involved lotteries

should not confound our identification of moment preferences.
20The average stack and the average number of showdown situations are calculated using the 4,450,585 observa-

tions in our final data set. The number of hands played by a distinct player is based on all hands in our initial data
set, including hands that did not result in a two-person showdown with a winning probability 6= 0.5.

21Examples include studies investigating financial investors (e.g. Boyer et al., 2010; Conrad et al., 2013; Lin and
Liu, 2018), game show participants (e.g. Gertner, 1993; Post et al., 2008), bettors (e.g. Snowberg and Wolfers, 2010;
Andrikogiannopoulou and Papakonstantinou, 2020;Moskowitz, 2021), or people buying auto insurance (e.g. Cohen
and Einav, 2007).
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One limitation of the setup that we investigate is that the underlying risks are, strictly speak-

ing, not always binary as split pots can be possible. Split pots arise when players hold the

same best five-card hand after all community cards are dealt. In this case, each involved player

that ended up in a showdown is awarded half of the pot. In our sample, 6% of all showdown

situations result in a split pot.22 In these scenarios, players face the following trinary lottery:

L = (x, π; 1
2x, µ; 0, 1−µ−π), where µ is the ex-ante probability of a split pot and π is the ex-ante

probability of winning the entire pot. In our data, µ and π are not independently observable,

neither for us nor for the players. In fact, we only observe a "payout-weighted" winning proba-

bility π̃ = 1
2µ+ π, which can be understood as the percentage of the pot the player is expected

to win. If a split pot is possible, the agent thus sees the binary lottery: L̃ = (x, π̃; 0, 1 − π̃), for

whichE(L) = E(L̃). In Appendix A.3 we present an example of a choice situation where a split

pot is possible and explain in detail how the payout-weighted probabilities are calculated. If no

split pot is possible ex-ante (µ = 0), which is true for the majority of hands, both lotteries are

equivalent (L = L̃). Moreover, the probability of a split pot is in every showdown the same for

the player that faces the right-skewed and the player that faces the left-skewed risk, so it should

not systematically confound our elicited skewness effects.

Notably, there are situationswhere the likelihood of a split pot is equal to one (µ = 1), where

the hand will result in a split pot irrespective of the remaining cards drawn from the deck. In

these situations, the weighted probability we observe is equal to 0.5, but no insurance option

was offered as the hand outcome is deterministic. In our data set, we cannot perfectly distin-

guish between such situations and situations with a weighted probability of 0.5 that resulted in

a split pot, but where the result was not deterministic, and thus insurance was offered. To ad-

dress this issue, we exclude all observations with an observed probability of 0.5. Most of these

observations refer to a situation where the underlying lottery is degenerate, and no insurance

option was offered.23 Moreover, a winning probability of 0.5 implies that the underlying risk is

not skewed, but symmetric. The main results are unchanged if we include all observations or
22As players’ best five-card hand includes precisely two of their private cards and three of the community cards,

splits are comparably rare in Omaha Poker cash games compared to other Poker games. This is one reason why it is
advantageous to focus on this particular poker variant in our study.

23This is implied by the following observation: In total, there are 111,521 observations (out of 4,562,352) with
an observed probability of 0.5, 95,415 of them result in a split pot. In these 95,415 cases, the insurance option was
chosen in 830 cases (0.9%). In the 16,106 cases that did not result in a split pot, the insurance was chosen in 3,528
cases (21.9%).
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only exclude observations with an observed probability of 0.5 that ultimately resulted in a split

pot.

One further limitation is that, unlike in experimental studies, individuals do not choose

between a binary risk and its expected value (the case we discussed in the preceding theoretical

section) but have to pay a margin of 1% of the expected value in case the safe option is selected.

The margin amount is small and affects all decisions equally, so the fee should not confound

our results.

4 Results

4.1 Descriptives

Wefirst provide a descriptive analysis of insurance choice frequencies for varying levels of skew-

ness, but constant variance.24

First, we group the observations conditional on the sign of skewness and find that individ-

uals who face a negatively-skewed lottery choose the insurance option in 20.0% of cases. In

contrast, individuals who face a positively-skewed risk do so in only 14.2% of the cases. This

difference is highly statistically significant (p-value < 0.0001) and in line with a preference for

positive skewness.

Second, Figure 2 illustrates the choice frequencies of the insurance option for different ranges

of ex-ante winning probabilities with constant average variance. The horizontal axis depicts

the winning probability range of right-skewed lotteries and the loss probability of the comple-

mentary left-skewed lotteries. For example, the first red bar at the left illustrates the insurance

choice frequency for lotteries with a winning probability between 0 and 0.1, while the neigh-

boring blue bar plots the frequency for lotteries with winning probabilities between 0.9 and 1,

i.e., loss probabilities between 0 and 0.1. In all subgroups, individuals who face a negatively

(left-)skewed lottery choose the insurance option significantly more often than their opponents

who face a positively (right-)skewed lottery with the same variance. The differences are siz-

able and highly statistically significant in all groups and range from 1.5% to 8.7% (see Table

11, Appendix A.4). The differences are smallest for ranges closer to π = 0.5, i.e., lotteries that,
24Note that as we focus on situations where two players are in a showdown, i.e., winning the pot is a complemen-

tary event for both opponents, each right-skewed lottery (π < 0.5) has exactly one left-skewed lottery (1−π > 0.5)
as a complement. The variance of the opponents’ binary lotteries are identical, V1 = V2 = π(1− π)x2. Accordingly,
the opponent of a player facing a binary risk with skewness S faces a lottery with a skewness of −S.
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on average, have smaller absolute skewness. Insurance shares tend to be smaller for lotteries

with a larger variance, suggesting a positive preference for the variance for the average player.

Interestingly, insurance shares seem rather constant concerning the variance for right-skewed

lotteries and tend to decrease for a higher variance for left-skewed lotteries.

Figure 2: Share of insurance choices for different winning probability ranges
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Note: Figure 2 depicts the share of insurance choices depending on ex-ante winning probabilities. The
probability space is divided into 10 equidistant segments. Right-skewed and complementary left-
skewed risks with the same variance are grouped together (e.g., the first red bar at the left refers to the
interval of right-skewed risks with winning probabilities in the range (0, 0.1] while the neighboring
blue bar refers to the interval of left-skewed risks with loss probabilities in (0, 0.1]). For more details
on observations and differences between groups see Table 11, Appendix A.4.

While these results support a preference for skewness, they do have certain drawbacks, as

they, for instance, do not account for different expected values of the gambles and other factors

that may confound our results. We address these issues in our regression analyses in the next

sections.

4.2 Regression analyses

Empirical Strategy

We are interested in the the effects of each moment of the underlying probability distribution

on individual insurance choice, keeping the other moments constant. We are agnostic about the

underlying risk preferences model and follow Mitton and Vorkink (2007) in assuming that the
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different risk moments have a linear effect on utility. We do not have a clear prior regarding the

influence of the expected value, given that both the safe option and the lottery exhibit roughly

the same expected value. In contrast, we expect a positive (negative) sign for variance if indi-

viduals in our sample are, on average risk-averse (risk-seeking). Skewness preferences imply a

negative skewness coefficient, meaning that individuals choose the risky option more often for

higher skewness. In our main specifications, we estimate the following reduced-form equation:

yi,j(t,z) = β0 + βEEj + βV Vj + βSSj + γZi + ηWj + λt + ψz + εi,j , (5)

where the dependent variable yi,j(t,z) is a binary indicator of whether player i chooses the in-

surance option in decision j, that refers to a specific month t and game with stake z. Variables

Ej , Vj and Sj denote the expected value, variance, and skewness of the binary risk in decision j.

Variable λt gives the month fixed effects that control for month-specific factors constant across

players that may affect risk-taking behavior, such as seasonality, adaptions over time, or COVID-

19 effects, and ψz captures stake fixed effects that account for the fact that a game with a higher

stake directly implies higher average expected values and variance. If such fixed effect controls

are not included, our coefficients do not only capture the effect ofEj and Vj on insurance choice

but also unobserved heterogeneity between gameswith different stakes. Finally, εi,j denotes the

error term.

To account for confounding factors related to the features of a particular hand, we control

for hand-specific characteristicsWj , including the amount of money the player started the hand

with (the stack), whether the player risked the entire stack during a particular showdown, the

weekday, and the position of the respective player at the table.25 The vector Zi includes a set of

player-specific characteristics to control for the playing style and the experience level of different

players. Player-specific characteristics are based on all poker hands in our data set (including

those without a showdown) and cover the following variables: number of hands played, num-
25Two remarks on the hand-specific characteristics: i) in a two-person showdown, there is always one player

that is all-in, i.e., she risks all the money that she started the hand with (stack), because otherwise, betting between
the two players would still be possible, which rules out a showdown; ii) the position at the table indicates when a
player has to act during the hand, which may have important implications for the playing style and whether a player
decides to play (i.e., voluntarily putting money in the pot) a particular starting hand or not. For example, players
that already putmoney into the pot by posting themandatory blinds tend to play awider selection of starting hands,
as the posted blinds count towards the necessary amount they have to call to see the first three community cards.
Similarly, players who act last in each betting round (button) will have more information on opponents’ actions
when they act in future betting rounds, which usually increases the range of played starting hands as well.
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ber of showdowns, profit or loss per 100 hands played, and the average winning probability at

showdown over all hands (summary statistics can be found in Appendix A.4).

While including player-specific controls addresses some endogeneity concerns, our esti-

mated coefficientsmay still be biased if unobserved factors are correlatedwith the type of lotter-

ies individuals are facing. To address this issue, we exploit the panel structure of our data and

include player-specific fixed effects αi that control for all time-invariant heterogeneity across

individuals. We extend the previous specification and also estimate the following fixed effect

regression:

yi,j(t,z) = β0 + βEEj + βV Vj + βSSj + ηWj + λt + ψz + αi + εij (6)

Regression results

Table 3 shows the estimated marginal effects from a linear probability model estimating equa-

tion (3) and (4). To compare the magnitude of the different coefficients more easily, we stan-

dardize the different moments in our main specifications.26 The signs and the p-values of the

coefficients are largely unchanged if we use non-standardized variables (see Table 12, Appendix

A.5). Similarly, our main results are unchanged if we estimate a Probit or a Logit model instead

(see Table 13, Appendix A.5). Using the standardized variables has the additional advantage

that the coefficient of the constant can be approximately interpreted as the average insurance

choice shares in the particular (sub)sample.

If we only include the three moments as independent variables (see Column 1, Table 3),

we find that increasing skewness by one standard deviation leads to a 2.3 percentage point de-

crease in the likelihood that the insurance option is chosen, keeping the expected value and the

variance constant. This is equivalent to a decrease of 13.4% compared to the average likelihood

that the insurance option is chosen (i.e., the mean dependent variable, which is equivalent to

the constant in our regression using z-scores). The coefficient is highly statistically significant

(p-value< 0.0001).

The coefficients of the other moments are significantly smaller. An increase of one standard

deviation in variance, all else equal, decreases the probability that the insurance is chosen only

by 0.04 percentage points, which is statistically insignificant at the 5%-level. Given that we are
26We follow the literature and standardize the variables by computing the z-score, that is, we subtract the respec-

tive mean and scale the variable by the inverse of its standard deviation. This allows us to make a unit-independent
comparison of the coefficient magnitudes.
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Table 3: Regression results for full sample

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected value 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.007∗∗∗

(8.066) (12.939) (13.542) (7.166)

Variance −0.0004∗ −0.001∗∗∗ −0.001∗∗∗ −0.003∗∗∗
(−1.689) (−3.268) (−2.876) (−4.757)

Skewness −0.023∗∗∗ −0.023∗∗∗ −0.024∗∗∗ −0.023∗∗∗
(−124.166) (−124.124) (−125.872) (−18.577)

Constant 0.171∗∗∗ 0.171∗∗∗ 0.171∗∗∗ 0.171∗∗∗
(965.613) (974.794) (966.475) (3,676.599)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player fixed effects No No No Yes
Observations 4,450,585 4,449,739 4,449,739 4,450,585

Note: The table reports OLS regression coefficients of our main empirical specification (Equation 5).
The dependent variable is a binary indicator that equals 1 if a player chooses the insurance option
and zero otherwise. The main independent variables of interest are the expected value, variance, and
skewness of the underlying lottery. Additionally we add fixed effects for different games (on the stake
level) and different months to control for the unobserved heterogeneity across games and over time.
The independent variables enter the regression as standardized z-scores. Corresponding t-statistics are
provided in parentheses, using robust standard errors. Specifications (1)-(3) differ in the considered
control variables: (1) does not contain any additional control variables, (2) extends the basic specifi-
cation by including player-specific characteristics as controls, (3) takes both player- and hand-specific
characteristics into account. Column 4 provides results from the fixed effects regression (Equation 4)
that includes both individual fixed effects of players and hand-specific controls. Underlying standard
errors for the fixed effects regression are clustered at the individual level. Number of observations
in Columns 2 and 3 differ because the average winning probability, one of the player-specific control
variables, is not available in 846 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.

dealing with a sample of more than 4.4 million observations the insignificance of the second

moment is particularly noteworthy. In comparison, the t-statistic of the skewness parameter

is equal to −124.17. A higher expected value increases the probability that the insurance is

chosen by 0.2 percentage points. Note that this does notmean that Poker players dislike positive

returns because the insurance value also increases with the risk’s expected value. The positive

coefficient indicates that players are more likely to choose the insurance option when facing

lotteries with larger expected values. While this comparison is only indicative, it is interesting

to note that the absolute size of the skewness coefficient is more than 57 times larger than the

variance coefficient.
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In Column 2, we include player-specific characteristics as control variables. The estimated

marginal effects of the expected value and skewness do not change considerably and remain

highly statistically significant. The same holds true if we further include hand-specific control

variables, see Column 3. The variance coefficient increases to 0.1 percentage points and becomes

statistically significant at the 1%-level for these two specifications. However, the t-statistics and

magnitude of the variance coefficient remains substantially smaller than for the other two mo-

ments, in particular compared to skewness.

The results of the player fixed effects regression model are presented in Column 4 of Table

3. The absolute coefficient of the first two moments increase to 0.7 percentage points for the

expected value and -0.3 percentage points for the variance. The estimated effect of increasing

skewness on the likelihood to choose the insurance option does not change in magnitude com-

pared to the base specification. While the effect of variance is now significant at the 1%-level,

it is still smaller in absolute terms than the coefficients on skewness, both in magnitude and

significance.

In sum, our regression analyses reveal strong and statistically significant effects of skewness

on individuals’ decisions to take up the insurance option or not. Despite our very extensive

data set, we fail to find a statistically detectable effect of variance—what is typically regarded

as a risk’s main property—in our base specification and only borderline statistically significant

negative effects in the other specifications. The estimated effect of skewness is negative and

strongly statistically and economically significant. The absolute magnitude and the t-statistics

of the standardized skewness coefficients is considerably larger than for the other twomoments,

suggesting an preeminent role of skewness preferences for individual risk-taking.

4.3 Robustness of skewness preferences

In this subsection, we provide robustness checks to address potential endogeneity issues and

limitations of our setup discussed above. First, as mentioned above, we estimate Logit and

Probit models to account for the inherent non-linear relationship between our binary outcome

variable and our independent variables. The results remain qualitatively robust. The estimated

average marginal effects of skewness, as well as their significance, remain nearly unchanged

in both specifications (see Table 13, Appendix A.5). For instance, in the most basic Logit and

Probit specification, we estimate a skewness effect of -2.2 percentage points, compared to -2.3
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percentage points in the linear probability model. While the coefficient on the expected value

increases in both specifications, the variance coefficient is statistically insignificant for all Logit

specifications (at the 1%-level) and only borderline significant and small in absolute terms for

the Probit specifications (around -0.2 percentage points).

Second, the magnitude of the first two moments of the lotteries depend on the the net pot

size. Our observations differ considerably in net pot sizes leading to substantial tails in the dis-

tribution of lotteries’ expected value and variance. Tomake sure that this dispersion in pot sizes

does not drive our results, we conduct our analyses using a normalized measure of lotteries’

volatility, which is independent of the pot size: the "coefficient of variation" (CV) of the lotter-

ies, which can be understood as the inverse of the "Sharpe ratio" of the lotteries.27 The CV is de-

fined as the ratio of the standard deviation to the mean:
√
V ar(L)/E(L) =

√
π(1− π)x2/πx =√

(1− p)/p. Thismeasure is dimensionless and commonly used in finance and economics (sim-

ilar to the Sharpe ratio, Sharpe (1994)) and in psychology (e.g. Weber et al., 2004). We estimate

the same regression equation as above, interchanging the expected value and the variance of the

lottery with its CV. Table 14 in the Appendix shows the estimated marginal effects. The skew-

ness coefficient slightly increases to −2.6 to −2.4 percentage points, depending on the specifi-

cation, and remains highly statistically significant. The coefficient on the CV is slightly positive

in all specifications and statistically significant at the 1%-level (except for the specification with

player fixed effects). As an additional corroboration that our results are not driven by out-

liers, we run our main specification with samples trimmed at the 1%- and the 99%-percentiles

of the lotteries’ net pot. The results are shown in Table 15. The skewness coefficient remains

unchanged in main specification and slightly increases to −2.0 percentage points in the player

fixed effects regression. The variance coefficient slightly increases in absolute terms to−0.5 per-

centage points and is now also highly significant. The coefficients are comparable if we trim

the sample with respect to the expected at the 5%- and 95%-percentiles or if we winsorize the

samples instead of trimming (results not shown).

Third, we run the same regressions for a sample that only includes players that face both

types of lotteries—left- and right-skewed—at least once, which does not change the results (see

Table 16, Appendix A.5). These results solidify our finding from above that the effects are not
27Note that the Sharpe ratio in Finance is usually defined in terms of the difference between a risky investment’s

return and the risk-free return.
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driven by a fundamental difference between individuals facing left-skewed and individuals fac-

ing right-skewed risks.

Fourth, we estimate Equations 5 and 6, excluding all observations of players who never or

always choose the insurance option. This rules out that our effect is driven by the fact that

players who always choose the insurance option face fundamentally different binary risks than

players who never choose the insurance option. Limiting our sample to those players increases

the estimated effect size of all moments (in absolute terms). In the base specification, the esti-

mated skewness effect increases from -2.3 to -3.0 percentage points, while the expected value

and variance coefficients change to 1 and -0.4 percentage points respectively (Column 1 of Ta-

ble 17, Appendix A.5). Similar changes can be observed for the other specifications (Columns

2-4). Again, the (absolute) effect size and t-statistics of the skewness variable largely exceed the

estimates of the other moments in those specifications.

In response to the issue of split pots discussed in Section 3.3, we run the same regressions

for a subsample that excludes all observations that resulted in a split pot. The results are illus-

trated in Table 18, Appendix A.5. The estimated coefficients and p-values of all three moments

remain nearly unchanged compared to our main regressions (Table 3). Note, however, that this

approach only excludes observations that ultimately resulted in a split pot and not all show-

downs where a split pot is possible ex-ante. The robustness of our estimated effects reassures

us that our results are not confounded by the possibility of split pots.

4.4 Heterogeneity in risk preferences

We estimate ourmain specifications for different subsamples to study heterogeneity in risk pref-

erences and shed some light on the generalizability of our results. We split the full sample at

the value of different player- and hand-specific characteristics that balances the observations in

the two subsamples. 28 Skewness preferences can be observed and are robust in all subsamples,

i.e., the coefficient of skewness is negative and strongly significant across all specifications that

we consider.
28For a list and summary statistics of all characteristics, see Tables 6, 7, 8, 9 and 10, Appendix A.4.
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Players’ experience

The experience level of the players is an important dimension. Previous studies already suggest

that experienced poker players are more self-reflective, less affected by negative emotions, and

make better decisions, by mathematical standards, than inexperienced players (Palomäki et al.,

2013, 2014). Therefore, for experienced players, the estimated effects are likely not driven by a

misperception of the underlying lotteries or diluted by random and emotional choice but can

rather be attributed to a deliberate choice of (or preference for) different moments of risk. More-

over, we have more repeated observations for more experienced players (for varying risks and

payouts), which helps us to increase the power of our fixed effect regression model (see Table

19, Appendix A.6).

Experienced players face more than 421 showdowns, a definition that balances the observa-

tions in the subsamples of inexperienced and experienced players. Experienced players show a

considerably stronger preference for skewness than inexperienced players. Experienced players

choose the insurance option in 22.0% of the cases when facing a left-skewed lottery, compared

to 14.2% when facing a right-skewed lottery. In contrast, the difference in insurance choice ra-

tios between the left- and the right-skewed gamble is considerably smaller for the subsample

of inexperienced players (17.9% vs. 14.2%). These differences along the experience dimension

persist if we focus on varying levels of lotteries’ variance (Panels A and B of Figure 3). Again,

for both subgroups, differences in insurance choices between left- and right-skewed lotteries

tend to be smaller the closer skewness is to zero (see Table 20, Appendix A.6).

In our regression analyses, we also find large heterogeneity in skewness preferences between

experienced and inexperienced players. For experienced players (as measured via the num-

ber of showdowns), increasing skewness by one standard deviation decreases the likelihood

of choosing the insurance option by 3.3 percentage points, which is equivalent to a decrease of

18.1% of the mean dependent variable in the respective subsample (Column 2, Table 4). For

inexperienced players, the estimated effect of skewness on individuals’ risk-taking is less than

half in size (Column 1 Table 4). This also holds when we include individual fixed effects and

hand-specific control variables (see Table 19, Appendix A.6).

The coefficients of the other twomoments also differ considerably for experienced and inex-

perienced players. The effect of variance is quite small in all subsamples and has different signs

for experienced and inexperienced players in the basic specification, similar to the expected
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Figure 3: Share of insurance choices depending on players’ experience
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Note: The figure depicts the share of insurance choices depending on ex-ante winning probabilities, equivalent to
Figure 2, for different subsamples of relatively inexperienced players (Panels A and C) and subsamples of relatively
experienced players (Panels B and D). The sample is split at the median of the respective experience measure. In
Panels A and B, players’ experience is measured by the number of observed showdowns in the sample. In contrast,
Panels C and D use the total number of played hands by each player, including those without a showdown, as a
measure of the player’s experience. The probability space is divided into 10 equidistant segments. Right-skewed
and complementary left-skewed riskswith the same variance are grouped together. Formore details on observations
and differences between groups see Table 20, Appendix A.6.

28



Table 4: Regression results for different levels of player experience

Dependent variable:
Insurance choice dummy

# showdowns # hands
≤ 421 > 421 ≤ 13,861 > 13,861
(1) (2) (3) (4)

Expected Value 0.006∗∗∗ −0.002∗∗∗ 0.007∗∗∗ −0.002∗∗∗
(13.118) (−8.310) (12.494) (−6.977)

Variance −0.002∗∗∗ 0.001∗∗∗ −0.003∗∗∗ 0.001∗∗∗
(−4.241) (3.645) (−4.117) (3.837)

Skewness −0.013∗∗∗ −0.033∗∗∗ −0.014∗∗∗ −0.032∗∗∗
(−52.569) (−115.220) (−56.669) (−111.701)

Constant 0.160∗∗∗ 0.182∗∗∗ 0.164∗∗∗ 0.178∗∗∗
(652.481) (715.876) (662.025) (706.444)

Observations 2,228,808 2,221,777 2,225,785 2,224,800
Unique players 81,278 1,941 80,936 2,283
Note: The table reports OLS regression coefficients of our main empirical specification
(Equation 5) for different subsamples. The full sample is split at themedian of two different
measures of player experience (as in Figure 3): i) the number of observed showdown situa-
tions per player (Columns 1 and 2); and ii) the total number of played hands by each player,
including those without a showdown (Columns 3 and 4). At this place, we only present re-
sults from the specification without additional control variables or individual fixed effects
of different players (equivalent to Column 1 of Table 3). The dependent variable is a binary
indicator that equals one if a player chooses the insurance option and zero otherwise. The
main independent variables of interest are the expected value, variance, and skewness of
the underlying lottery. Additionally, we add fixed effects for different games (on the stake
level) and different months to control for the unobserved heterogeneity across games and
over time. The independent variables enter the regression as standardized z-scores. Corre-
sponding t-statistics are provided in parentheses, using robust standard errors. ∗: p<0.1;
∗∗: p<0.05; ∗∗∗: p<0.01.
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value coefficient. These heterogeneity results further reaffirm our previous findings that skew-

ness, compared to the variance, of the lotteries is a more stable and important driver of choice

under risk in our sample.

In Panels C andDof Figure 3 andColumns 3 and 4 of Table 4we split the sample according to

an alternative measure of experience: the total number of hands played by an individual player

(including those without a showdown). The cutoff value is equal to 13,861 played hands. The

differences between the two subgroups are similar to before and remain essentially unchanged

if we include fixed effects (see Table 19, Appendix A.6). The estimated coefficients of the other

risk moments are also very similar for both experience measures.

Players’ success

Skill partly drives poker players’ success, which separates poker from other pure games of

chance, such as roulette (Potter van Loon et al., 2015; Duersch et al., 2020). So, it may be relevant

not to only distinguish between more and less experienced players but also between losing and

winning players. While skill does not affect the outcome of the binary lotteries that we study in

this paper, it affects the outcome of the preceding strategic interactions taking place under im-

perfect information. On average, skilled players more accurately judge the relative strength of

their poker hands, predict the opponents’ hands better and adjust their betting behavior accord-

ingly, resulting in higher expected net returns. Therefore, there are likely systematic differences

between losing and winning players concerning their playing motives, risk attitudes, and pref-

erences.

We split the sample of players into two subgroups according to the recorded profits (also

considering non-showdown hands). According to our definition, winning (losing) players

make a positive (negative) net profit over our observation period. To account for the fact that

profits can be the result of sheer luck if a player only plays a few hands, we also examine the

heterogeneity in the subsample of experienced players only, who play at least 13,861 hands over

our observation period. We distinguish between sophisticated players and recreational players.

Sophisticated players are all experienced winning players, while experienced losing players are

defined as recreational players. Like sophisticated individual investors, sophisticated poker

players are likely to reflect and study their optimal (playing) strategy more frequently. Sophis-

ticated players are less likely to play for recreational reasons only and are thus potentially more
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comparable to the financial experts. In contrast, recreational players and their underlying risk

attitudes may be more comparable to speculative retail investors or people who gamble in a

casino. Note that most winning players tend to be experienced. Over our observation period,

the median experienced player makes an average loss of $1.76 per hundred hands, while the

median inexperienced player makes an average loss of $20.83.

Table 5: Regression results in subsamples, depending on players’ success

Dependent variable:
Insurance choice dummy

All players Experienced players only
without fixed effects with fixed effects without fixed effects with fixed effects

Profit per hundred hands Profit per hundred hands Profit per hundred hands Profit per hundred hands

≤ 0 > 0 ≤ 0 > 0 ≤ 0 > 0 ≤ 0 > 0

(1) (2) (3) (4) (5) (6) (7) (8)

Expected Value 0.006∗∗∗ 0.002∗∗∗ 0.011∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.007∗∗∗ 0.002
(14.164) (8.058) (5.599) (3.343) (5.591) (5.586) (2.690) (1.636)

Variance −0.002∗∗∗ −0.001∗∗∗ −0.004∗∗∗ −0.002∗∗∗ −0.0001 −0.001∗∗∗ −0.002∗ −0.001∗
(−3.605) (−6.290) (−3.512) (−3.088) (−0.560) (−5.238) (1.887) (−1.690)

Skewness −0.029∗∗∗ −0.011∗∗∗ −0.027∗∗∗ −0.011∗∗∗ −0.049∗∗∗ −0.010∗∗∗ −0.048∗∗∗ −0.011∗∗∗
(−123.741) (−40.649) (−17.422) (−7.172) (−111.075) (−34.107) (−13.868) (−5.264)

Constant 0.193∗∗∗ 0.114∗∗∗ 0.193∗∗∗ 0.114∗∗∗ 0.231∗∗∗ 0.105∗∗∗ 0.231∗∗∗ 0.105∗∗∗
(879.277) (410.847) (2,633.329) (1,664.233) (1,462.782) (340.693) (2,558.703) (1,264.016)

Player-specific controls No No No No No No No No
Hand-specific controls No No Yes Yes No No Yes Yes
Player fixed effects No No Yes Yes No No Yes Yes
Observations 3,192,498 1,258,087 3,192,498 1,258,087 1,289,004 935,796 1,289,004 935,796
Unique players 65,886 17,333 65,886 17,333 1,472 811 1,472 811

Note: The table reports regression coefficients for basic OLS specification (Equation 5) in the columns (1)-(2), (5)-(6) and for
the setup including player fixed effects (Equation 6) in columns (3)-(4), (7)-(8). The baseline samples are split into losing
(columns with an uneven number) and winning (columns with an even number) players. Columns (1)-(4) employ the full
sample and columns (5)-(8) the sample of experienced players as the baseline sample. The dependent variable is a binary in-
dicator that equals 1 if a player chooses the insurance option and zero otherwise. The main independent variables of interest
are the expected value, variance, and skewness of the underlying lottery. Additionally we add fixed effects for different games
(on the stake level) and different months to control for the unobserved heterogeneity across games and over time. The inde-
pendent variables enter the regression as standardized z-scores. Corresponding t-statistics are provided in parentheses, using
robust standard errors. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.

The estimation results of the subsample analyses are shown in Table 5. We find strong evi-

dence of skewness preferences in both subsamples. However, skewness prefences are consider-

ably more pronounced for losing players than for winning players, particularly if we consider

the subsample of recreational players. For recreational players, a one standard deviation in-

crease in skewness decreases the likelihood that the insurance is chosen by around five percent-

age points in the base case (Column 5) as well as in the fixed effects specification (Column 7).

The magnitude and the size of the coefficents of the other two moments is comparable to the

full sample. For winning and sophisticated players (Column 2, 4, 6 and 8), a one standard devi-
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ation increase in skewness decreases the likelihood that the insurance is chosen by only 1.0−1.1

percentage points. While the estimated skewness effect is considerably smaller than for losing

players, it is still highly significant in all specification in contrast to the other two moments.

The absolute size of the expected value and variance coefficients are considerably smaller than

for losing players, and become insignificant at the 5%-level for the fixed effect regression for

sophisticated players (Column 8).

The subsamples do not only differ in terms of the estimated skewness coefficients, but also

regarding the average insurance shares. Winning players choose the insurance in around 11.4%

and losing players in around 19.3% of the cases. The difference in insurance shares increases

if we consider recreational and sophisticated players (23.1% vs. 10.5%). The differences, both

in terms of insurance shares and risk preferences, are intuitive in the sense that risk neutral-

ity arguably helps to maximize earnings in the long run. Therefore, successful poker players’

choices should be less sensitive to risk moments, and risk neutral players would never choose a

costly insurance option. Yet, skewness still plays a significant role in the insurance decision of

winning players.

5 Conclusion

The introduction of the insurance option in online poker allows us to cleanly test for skewness

preferences in a large set of observational data among individuals that are rather experienced in

choice under risk. We detect a strong and robust effect of skewness on risk-taking. Our results

complement, for instance, recent survey findings (Holzmeister et al., 2020)whereby skewness is

the only moment that systematically affects financial professionals’ perception of financial risk.

We substantiate this finding in a real-world setting with a comprehensive data set of strongly

incentivized stylized investment decisions. Our results suggest that idiosyncratic skewness or

lottery-like features are important for asset prices, particularly in markets predominately pop-

ulated by speculative investors, such as the markets for crypto assets. In addition, our findings

have important real-world implications beyond asset pricing, as skewness preferences affect

career choices and may explain recent phenomena, such as the boom of tech start-ups.
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A Appendix

A.1 Poker hands ranking

The player with the highest ranked five-card hand, consisting of two private cards and three

community cards, wins the pot in Omaha Poker cash games. The poker hand ranking is as fol-

lows (Source: Pokerstars: https://www.pokerstars.eu/poker/games/rules/hand-rankings/):

1. Straight Flush: Five cards in numerical order, all of identical suits. In the event of a tie,

the highest rank at the top of the sequence wins. The best possible straight flush is known as

a royal flush, which consists of the ace, king, queen, jack, and ten of a suit. A royal flush is an

unbeatable hand.

2. Four of a Kind: Four cards of the same rank, and one side card or ‘kicker.’ In the event of

a tie, the highest four of a kind wins. In community card games, where players have the same

four of a kind, the highest fifth side card (’kicker’) wins.

3. Full House: Three cards of the same rank, and two cards of a different, matching rank.

In the event of a tie, the highest three matching cards wins the pot. In community card games,

where players have the same three matching cards, the highest value of the two matching cards

wins.

4. Flush: Five cards of the same suit. In the event of a tie, the player holding the high-

est ranked card wins. If necessary, the second-highest, third-highest, fourth-highest, and fifth-

highest cards can be used to break the tie. If all five cards are the same rank, the pot is split. The

suit itself is never used to break a tie in poker.

5. Straight: Five cards in sequence. In the event of a tie, the highest ranking card at the top of

the sequence wins. Note: The Ace may be used at the top or bottom of the sequence, and is the

only card which can act in this manner. A,K,Q,J,T is the highest (Ace high) straight; 5,4,3,2,A is

the lowest (Five high) straight.

6. Three of a kind: Three cards of the same rank, and two unrelated side cards. In the event

of a tie, the highest ranking three of a kind wins. In community card games, where players have

the same three of a kind, the highest side card, and if necessary, the second-highest side card

wins.
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7. Two pair: Two cards of a matching rank, another two cards of a different matching rank,

and one side card. In the event of a tie: Highest pair wins. If players have the same highest pair,

highest second pair wins. If both players have two identical pairs, highest side card wins.

8. One pair: Two cards of a matching rank, and three unrelated side cards. In the event

of a tie, the highest pair wins. If players have the same pair, the highest side card wins, and if

necessary, the second-highest and third-highest side card can be used to break the tie.

9. High card: Any hand that does not qualify under a category listed above. In the event of

a tie, the highest card wins, and if necessary, the second-highest, third-highest, fourth-highest,

and smallest card can be used to break the tie.

A.2 Choice situation for a showdown before the flop

Figure 4 shows another example of a showdown situation, in particular of a constellation be-

fore any community cards have been dealt. The difference from the example in the main text

is the different stage of the game when the showdown situation has occurred. The situation

environment for the player is equivalent, i.e., payouts and probabilities are clearly displayed on

the player’s screen and the decision the player takes is the same. Note that the players have the

insurance option only once, namely in the moment of showdown.
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Figure 4: Example of an all-in cashout situation before any community cards have been dealt
(German software)

A.3 Showdowns with split pot possibility

Figure 5 shows an example of a showdown situation with one card to come. The difference

from the example in the main text is that there is a split pot possibility. After the Turn, Player

1 holds the best five-card hand with a "Straight" (5-6-7-8-9). Player 4 best possible five-card

hand is 8-8-8-K-9, three of a kind. Again, there are still 40 cards in the deck. Player 4 would

win the entire pot if the board pairs, i.e., if a King, 9, 5 or 8 is drawn, giving her a winning Full

House. As Player 1 holds one 8 and one 5, there are seven cards in the remaining deck that

would give Player 4 the winning hand. Accordingly, the likelihood for Player 4 to win the entire

pot is π = 7
40 = 0.175. However, as player 4 also holds a 6 (and 8/9) in his hand, a 7 on the

River would give her the same straight (5-6-7-8-9) as Player 1, which would result in a split pot.

There are three 7s still in the deck, implying a probability for a split pot of: µ = 3
40 = 0.075.

As Player 4 would only win half of the pot in this case, 1
2µ is added to the winning probability

to get the "payout-weighted probability," or expected winning share of pot, that is displayed on

the screen: π + 1
2µ = 0.175 + 1

20.075 = 0.2125. Apart from that, the decision environment for
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the player is equivalent, i.e., payouts are clearly displayed on the player’s screen and the players

only have the insurance option once, namely in the moment of showdown.

Figure 6 illustrates shares of hands that result in a split pot depending on expected winning

shares of the pot.

Figure 5: Example of an all-in cashout situation on the Turn with a split pot possibility
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Figure 6: Share of split pots depending on the expected winning share of the pot
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Note: Figure 6 presents the share of hands that resulted in a split pot depending on expected winning
shares of the pot. The expected winning share is equivalent to the "payout-weighted" winning proba-
bility introduced in Section 3.3. The shares are divided into 10 equidistant segments and right-skewed
and complementary left-skewed risks are grouped together (e.g., the first red bar on the left refers to
the interval of right-skewed risks with expected winning shares in the range (0,0.1] and the neighbor-
ing blue bar refers to the interval of left-skewed risks with expected winning shares in [0.9,1)).

A.4 Additional summary statistics and descriptives

Table 6: Summary statistics of player-specific characteristics

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Number of hands played 83,219 2,159.42 12,932.65 1.00 53.00 186.00 785.00 602,706.00
Number of experienced showdown situations 83,219 53.48 252.60 1.00 2.00 7.00 26.00 13,930.00
Average winning probability 82,470 0.44 0.15 0.00 0.37 0.45 0.52 1.00
Profit per hundred hands 83,219 −98.01 1,048.16 −145,158.40 −66.45 −19.73 −2.27 36,620.00

Note: The table reports summary statistics of all player-specific characteristics that we use in our empirical anal-
ysis. Characteristics are used, both, as control variables in our regressions analyses and to split the full sample
for our subsample analyses (Section 4.3.). The variable Number of experienced showdown situations is calculated
using the 4,485,585 observations of showdown situations in our full sample. The other characteristics are based
on all hands in our initial data set, which also includes hands that did not result in a two-person showdown
with awinning probability of 6= 0.5. The statistics are calculatedwith equal weights on all players. For the profit
per hundred hands variable this implies that players who have played fewer hands are heavily overweighted in
the calculation of the summary statistics. As these players usually make high losses in few hands and then stop
playing, we get a large discrepancy between the average profits per hundred hand across all hands and players,
which is equal to −$8.88, and the profit per hundred hands when the mean is calculated with equal weights
on single players (as illustrated in the table). The number of observations (N) for average winning probability
differs compared to other characteristics as these values are not available in the data for 749 players.
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Tables 7-9 report summary statistics of all hand-specific characteristics that we use in our em-

pirical analysis.

Table 7: Summary statistics of stakes & stacks

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Stake 4,450,585 1.195 5.505 0.100 0.100 0.250 0.500 100.000
Stack 4,450,585 115.088 628.627 0.100 10.390 25.240 63.960 81,643.93

Note: The table reports summary statistics of the stake (mandatory bets) and the stacks (money of each player at the be-
ginning of the hand) in our sample. Values are measured in US-$ terms.

Table 8: Summary statistics of risk-all-stack dummy

Statistic N Risk-all-stack=1 Risk-all-stack=0 Mean St. Dev.
Risk-All-Stack Dummy 4,450,585 2,225,425 2,225,160 0.500 0.500

Note: The table reports the number of hand situations where the respective player risks her entire stack (Risk-all-
stack=1). As we do not directly observe whether a player risks her entire stack in a showdown, we approximate this
indicator variable based on the player’s stack, final pot and expected winning shares. Due to rounding and presence of
mandatory bets of other players who are not involved in the showdown, there might be some individuals that wrongly
end up in the subsample of individuals that do not risk their entire stack. The error margin should be small and should
not confound the results.

Table 9: Frequencies of table positions

BB BTN CO EP MP SB
Frequency 915,826 902,579 773,689 362,749 632,235 863,507

Note: The table reports absolute frequencies of the different table positions of the player in a
showdown situation. These are namely: BB ("Big Blind"; person that has to post the big blind),
BTN ("Button"; person that acts last in every betting round after the Flop), CO ("Cut-Off"; per-
son that acts second last in every betting round after the Flop), SB ("Small Blind", person that
has to post the big blind) as well as EP ("Early Position") and MP ("Middle Position”) that
refers to positions between the "Big Blind" and the "Cut-Off".

Table 10: Frequencies of weekdays

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Frequency 610,961 610,300 617,142 616,895 641,434 682,997 670,856

Note: The table reports absolute frequencies of the weekdays when showdown situations have occurred.
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Table 11: Differences in shares of insurance choice among right- and left-skewed risks for dif-
ferent ranges of winning probabilities

right-skewed interval (r) left-skewed interval (l) Obs.(r) Obs.(l) ∆ in shares t-statistic

(0.0, 0.1] [0.9, 1.0) 298, 984 298, 984 0.087∗∗∗ 86.165

(0.1, 0.2] [0.8, 0.9) 344, 012 344, 013 0.085*** 88.607

(0.2, 0.3] [0.7, 0.8) 462, 970 463, 002 0.076*** 95.299

(0.3, 0.4] [0.6, 0.7) 563, 305 563, 297 0.054*** 78.788

(0.4, 0.5) (0.5, 0.6) 555, 986 556, 032 0.015*** 21.340

Note: The table reports the number of observations in each of the ten equidistant probability ranges illustrated in Figure
2. Column 5 reports the difference in the shares of insurance choice between complementary groups of left- and right-
skewed risks. The imbalance in observations between the left- and right skewed intervals is due to rounding differences
in winning probabilities. Corresponding t-statistics are displayed in Column 6.∗∗∗: p<0.0001.
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A.5 Robustness checks

Table 12: Regression results for full sample, non-standardized variables

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.000005∗∗∗ 0.000008∗∗∗ 0.000009∗∗∗ 0.00002∗∗∗

(8.066) (12.939) (13.542) (7.166)

Variance −0.0000000002∗ −0.0000000003∗∗∗ −0.0000000003∗∗∗ −0.000000001∗∗∗
(−1.689) (−3.268) (−2.876) (−4.757)

Skewness −0.010∗∗∗ −0.010∗∗∗ −0.011∗∗∗ −0.010∗∗∗
(−124.166) (−124.124) (−125.872) (−18.577)

Constant 0.186∗∗∗ 0.064∗∗∗ 0.044∗∗∗ 0.139∗∗∗
(224.891) (34.965) (22.722) (36.403)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player fixed effects No No No Yes
Observations 4,450,585 4,449,739 4,449,739 4,450,585

Note: The table reports OLS regression coefficients of our main empirical specification (Equation 5). Com-
pared to Table 3, the independent variable enters the regression as non-standardized absolute values. The
dependent variable is a binary indicator that equals 1 if a player chooses the insurance option and zero
otherwise. The main independent variables of interest are the expected value, variance, and skewness of
the underlying lottery. Additionally we add fixed effects for different games (on the stake level) and over
time (on the month level) to control for the unobserved heterogeneity in these dimensions. Correspond-
ing t-statistics are provided in parentheses, using robust standard errors. Specifications (1)-(3) differ in
the considered control variables: (1) does not contain any additional controls variables, (2) extends the
basic specification by including player-specific characteristics as controls, (3) takes both player- and hand-
specific characteristics into account. Column 4 provides results from the fixed effects regression (Equation
4) that includes both individual fixed effects and hand-specific controls. Underlying standard errors for
the fixed effects regression are clustered at the individual level. Number of observations in Columns (2)
and (3) differ because the average winning probability, one of the player-specific control variables, is not
available in 846 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 13: Regression results for full sample, Logit and Probit specifications

Dependent variable:
Insurance choice dummy

Logit Probit
(1) (2) (3) (1) (2) (3)

Expected value 0.011∗∗∗ 0.014∗∗∗ 0.020∗∗∗ 0.008∗∗∗ 0.010∗∗∗ 0.012∗∗∗
(12.521) (13.452) (16.809) (12.982) (14.245) (15.093)

Variance −0.004∗∗ −0.006∗∗∗ −0.004∗ −0.002∗∗∗ −0.003∗∗∗ −0.002∗∗∗
(−2.418) (−2.811) (−1.861) (−3.410) (−3.700) (−3.788)

Skewness −0.022∗∗∗ −0.022∗∗∗ −0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗
(−113.741) (−112.777) (−113.001) (−117.179) (−116.262) (−116.751)

Player-specific controls No Yes Yes No Yes Yes
Hand-specific controls No No Yes No No Yes

Observations 4,450,585 4,449,739 4,449,739 4,450,585 4,449,739 4,449,739

Note: The table reports (average) marginal effects from estimating Logit & Probit specifications accord-
ing to Equation 5. The dependent variable is a binary indicator that equals 1 if a player chooses the in-
surance option and zero otherwise. The main independent variables of interest are the expected value,
variance, and skewness of the underlying lottery. Additionally we add fixed effects for different games
(on the stake level) and different months to control for the unobserved heterogeneity across games and
over time. The independent variables enter the regression as standardized z-scores. The values of Wald
test statistics (for testing the null hypothesis that coefficients are zero) are provided in parentheses, us-
ing robust standard errors. Specifications (1)-(3) differ in the considered control variables: (1) does not
contain any additional controls variables, (2) extends the basic specification by including player-specific
characteristics as controls, (3) takes both player- and hand-specific characteristics into account. Under-
lying standard errors for the fixed effects regression are clustered at the individual level. Number of ob-
servations in Columns 2 and 3 differ because the average winning probability, one of the player-specific
control variables, is not available in 846 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 14: Regression results, employing coefficient of variation as a measure of dispersion in-
stead of expected value and variance

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Coefficient of Variation 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.0001

(8.940) (8.222) (8.339) (0.155)

Skewness −0.026∗∗∗ −0.026∗∗∗ −0.026∗∗∗ −0.024∗∗∗
(−68.267) (−68.309) (−69.277) (−16.542)

Constant 0.171∗∗∗ 0.171∗∗∗ 0.171∗∗∗ 0.171∗∗∗
(965.620) (974.794) (968.129) (2,502.023)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 4,450,585 4,449,739 4,449,739 4,450,585

Note: The table reports OLS regression coefficients of our main empirical specification (Equation
5). The dependent variable is a binary indicator that equals 1 if a player chooses the insurance op-
tion and zero otherwise. The main independent variables of interest are the coefficient of variation
and skewness of the underlying lottery. Additionally we add fixed effects for different games (on
the stake level) and different months to control for the unobserved heterogeneity across games
and over time. The independent variables enter the regression as standardized z-scores. Cor-
responding t-statistics are provided in parentheses, using robust standard errors. Specifications
(1)-(3) differ in the considered control variables: (1) does not contain any additional control vari-
ables, (2) extends the basic specification by including player-specific characteristics as controls,
(3) takes both player- and hand-specific characteristics into account. Column 4 provides results
from the fixed effects regression (Equation 4) that includes both individual fixed effects of players
and hand-specific controls. Underlying standard errors for the fixed effects regression are clus-
tered at the individual level. Number of observations in Columns 2 and 3 differ because the aver-
age winning probability, one of the player-specific control variables, is not available in 846 choice
situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 15: Regression results for a subsample with the net pot to be trimmed between 1%- and
99%-percentiles

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected value 0.009∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.024∗∗∗

(32.338) (43.577) (43.526) (14.446)

Variance −0.005∗∗∗ −0.006∗∗∗ −0.006∗∗ −0.009∗∗∗
(−26.117) (−31.631) (−30.242) (−11.648)

Skewness −0.022∗∗∗ −0.022∗∗∗ −0.022∗∗∗ −0.020∗∗∗
(−114.681) (−112.867) (−114.551) (−16.245)

Constant 0.173∗∗∗ 0.173∗∗∗ 0.174∗∗∗ 0.172∗∗∗
(961.479) (970.495) (936.394) (1,942.803)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player Fixed effects No No No Yes
Observations 4,361,753 4,360,925 4,360,925 4,361,753

Note: The table reports OLS regression coefficients of our main empirical specification (Equation 5).
The underlying sample is trimmed between 1%- and 99%-percentiles of the net pot. The dependent
variable is a binary indicator that equals 1 if a player chooses the insurance option and zero otherwise.
The main independent variables of interest are the expected value, variance, and skewness of the un-
derlying lottery. Additionally we add fixed effects for different games (on the stake level) and different
months to control for the unobserved heterogeneity across games and over time. The independent vari-
ables enter the regression as standardized z-scores. Corresponding t-statistics are provided in paren-
theses, using robust standard errors. Specifications (1)-(3) differ in the considered control variables:
(1) does not contain any additional control variables, (2) extends the basic specification by including
player-specific characteristics as controls, (3) takes both player- and hand-specific characteristics into
account. Column 4 provides results from the fixed effects regression (Equation 4) that includes both
individual fixed effects of players and hand-specific controls. Underlying standard errors for the fixed
effects regression are clustered at the individual level. Number of observations in Columns 2 and 3
differ because the average winning probability, one of the player-specific control variables, is not avail-
able in 828 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 16: Regression results for the subsample of players that face both left- and right-skewed
showdown situations

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.007∗∗∗

(7.833) (12.842) (13.364) (7.147)

Variance −0.0003 −0.001∗∗∗ −0.001∗∗∗ −0.003∗∗∗
(−1.588) (−3.241) (−2.888) (−4.748)

Skewness −0.023∗∗∗ −0.023∗∗∗ −0.024∗∗∗ −0.023∗∗∗
(−124.566) (−124.864) (−126.641) (−18.601)

Constant 0.171∗∗∗ 0.171∗∗∗ 0.171∗∗∗ 0.171∗∗∗
(962.681) (972.125) (963.279) (3,665.002)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 4,415,012 4,414,920 4,414,920 4,415,012

Note: The table reports OLS regression coefficients of our main empirical specification (Equation 5).
Compared to Table 3, we exclude all observations of players that do not face at least one right- and
one left-skewed lottery. The dependent variable is a binary indicator that equals 1 if a player chooses
the insurance option and zero otherwise. The main independent variables of interest are the expected
value, variance, and skewness of the underlying lottery. Additionally we add fixed effects for different
games (on the stake level) and different months to control for the unobserved heterogeneity across
games and over time. The independent variables enter the regression as standardized z-scores. Corre-
sponding t-statistics are provided in parentheses, using robust standard errors. Specifications (1)-(3)
differ in the considered control variables: (1) does not contain any additional controls variables, (2)
extends the basic specification by including player-specific characteristics as controls, (3) takes both
player- and hand-specific characteristics into account. Column 4 provides results from the fixed effects
regression (Equation 4) that includes both individual fixed effects and hand-specific controls. Under-
lying standard errors for the fixed effects regression are clustered at the individual level. Number of
observations in Columns 2 and 3 differ because the average winning probability, one of the player-
specific control variables, is not available in 92 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 17: Regression results for a subsample, excluding players who never or always choose the
insurance option

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.010∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.017∗∗∗

(17.875) (18.859) (20.047) (5.734)

Variance −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.007∗∗∗
(−4.838) (−5.147) (−5.273) (−4.072)

Skewness −0.030∗∗∗ −0.029∗∗∗ −0.029∗∗∗ −0.028∗∗∗
(−128.099) (−122.344) (−122.821) (−18.616)

Constant 0.218∗∗∗ 0.218∗∗∗ 0.218∗∗∗ 0.218∗∗∗
(989.510) (999.045) (968.764) (2,056.112)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 3,476,736 3,476,692 3,476,692 3,476,736

Note: The table reports OLS regression coefficients of our main empirical specification (Equation 5).
Compared to Table 3, we exclude all observations of players here who never or always choose the in-
surance option. The dependent variable is a binary indicator that equals 1 if a player chooses the in-
surance option and zero otherwise. Themain independent variables of interest are the expected value,
variance, and skewness of the underlying lottery. Additionally we add fixed effects for different games
(on the stake level) and different months to control for the unobserved heterogeneity across games
and over time. The independent variables enter the regression as standardized z-scores. Correspond-
ing t-statistics are provided in parentheses, using robust standard errors. Specifications (1)-(3) differ
in the considered control variables: (1) does not contain any additional controls variables, (2) extends
the basic specification by including player-specific characteristics as controls, (3) takes both player-
and hand-specific characteristics into account. Column 4 provides results from the fixed effects regres-
sion (Equation 4) that includes both individual fixed effects and hand-specific controls. Underlying
standard errors for the fixed effects regression are clustered at the individual level. Number of obser-
vations in Columns 2 and 3 differ because the average winning probability, one of the player-specific
control variables, is not available in 44 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 18: Regression results for the subsample in which no split pots occur

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.002∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.008∗∗∗

(10.673) (13.966) (14.950) (7.365)

Variance −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.003∗∗∗
(−2.055) (−3.056) (−2.694) (−4.127)

Skewness −0.024∗∗∗ −0.024∗∗∗ −0.024∗∗∗ −0.024∗∗∗
(−123.847) (−123.122) (−124.966) (−18.625)

Constant 0.177∗∗∗ 0.177∗∗∗ 0.177∗∗∗ 0.177∗∗∗
(950.791) (959.921) (949.999) (3,089.977)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 4,154,930 4,154,123 4,154,123 4,154,930

Note: The table reports OLS regression coefficients of our main empirical specification (Equation 5).
Compared to Table 3, we exclude all observations that result in a split pot ex-post. The dependent
variable is a binary indicator that equals 1 if a player chooses the insurance option and zero otherwise.
The main independent variables of interest are the expected value, variance, and skewness of the un-
derlying lottery. Additionally we add fixed effects for different games (on the stake level) and differ-
ent months to control for the unobserved heterogeneity across games and over time. The indepen-
dent variables enter the regression as standardized z-scores. Corresponding t-statistics are provided
in parentheses, using robust standard errors. Specifications (1)-(3) differ in the considered control
variables: (1) does not contain any additional controls variables, (2) extends the basic specification
by including player-specific characteristics as controls, (3) takes both player- and hand-specific char-
acteristics into account. Column 4 provides results from the fixed effects regression (Equation 4) that
includes both individual fixed effects and hand-specific controls. Underlying standard errors for the
fixed effects regression are clustered at the individual level. Number of observations in Columns 2
and 3 differ because the average winning probability, one of the player-specific control variables, is not
available in 807 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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A.6 Additional subsample analyses

Table 19: Regression results in subsamples, with fixed effects

Dependent variable:
Insurance choice dummy

# showdowns # hands
≤ 421 > 421 ≤ 13,861 > 13,861
(1) (2) (3) (4)

Expected Value 0.011∗∗∗ 0.003∗∗∗ 0.012∗∗∗ 0.003∗∗
(7.675) (2.782) (7.183) (2.536)

Variance −0.004∗∗∗ −0.001∗∗ −0.005∗∗∗ −0.001∗∗
(−4.938) (−2.217) (−4.789) (−1.959)

Skewness −0.012∗∗∗ −0.035∗∗∗ −0.013∗∗∗ −0.033∗∗∗
(−16.951) (−14.646) (−16.745) (−14.183)

Constant 0.159∗∗∗ 0.182∗∗∗ 0.164∗∗∗ 0.178∗∗∗
(2,473.711) (3,151.726) (1,932.125) (3,408.405)

Player-specific controls No No No No
Hand-specific controls Yes Yes Yes Yes
Player fixed effects Yes Yes Yes Yes
Observations 2,228,808 2,221,777 2,225,785 2,224,800
Unique players 81,278 1,941 80,936 2,283
Note: The table reports OLS regression coefficients of our fixed effects specification
(Equation 6) for different subsamples. Compared to Table 4, we include individual
fixed effects and hand-specific characteristics as control variables (equivalent to Col-
umn 4 of Table 3). The full sample is split at the median of two different measures
of player experience: i) the number of observed showdown situations in our sam-
ple per player (Columns 1 and 2); and ii) the total number of played hands by each
player, including those without a showdown (Columns 3 and 4). The dependent
variable is a binary indicator that equals 1 if a player chooses the insurance option
and zero otherwise. The main independent variables of interest are the expected
value, variance, and skewness of the underlying lottery. Additionally we add fixed
effects for different games (on the stake level) and different months to control for
the unobserved heterogeneity across games and over time. The independent vari-
ables enter the regression as standardized z-scores. Corresponding t-statistics are
provided in parentheses, using robust standard errors. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗:
p<0.01.
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Table 20: Differences in shares of insurance choice among right- and left-skewed risks

r l # showdowns # hands

≤ 421 > 421 ≤ 13,861 > 13,861

(1) (2) (3) (4) (5) (6)

(0.0, 0.1] [0.9, 1.0) 0.044∗∗∗ 0.132∗∗∗ 0.049∗∗∗ 0.128∗∗∗

(32.088) (89.251) (35.271) (87.543)

(0.1, 0.2] [0.8, 0.9) 0.049∗∗∗ 0.121∗∗∗ 0.054∗∗∗ 0.117∗∗∗

(37.326) (86.976) (40.776) (84.803)

(0.2, 0.3] [0.7, 0.8) 0.048∗∗∗ 0.103∗∗∗ 0.053∗∗∗ 0.098∗∗∗

(43.805) (89.307) (47.611) (86.359)

(0.3, 0.4] [0.6, 0.7) 0.041∗∗∗ 0.065∗∗∗ 0.045∗∗∗ 0.061∗∗∗

(42.663) (66.379) (46.302) (63.359)

(0.4, 0.5) (0.5, 0.6) 0.012∗∗∗ 0.016∗∗∗ 0.013∗∗ 0.015∗∗∗

(12.590) (16.507) (13.818) (15.337)
Note: The table presents the difference in the shares of insurance choice between
left- and right-skewed risks for different subsamples and ranges of ex-ante win-
ning probabilities, as defined in Columns 1 and 2 and illustrated in Figure 3. The
full sample is split at themedian of two different measures of player experience: i)
the number of observed showdown situations in our sample per player (Columns
3 and 4); and ii) the total number of played hands by each player, including those
without a showdown (Columns 5 and 6). Corresponding t-statistics are provided
in parentheses. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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